Matrix A
Math Calcs Scalar Multiplication Calculator is a online tool for calculating the resultant matrix after the multiplication of input matrix with a scalar value.
Scalar Multiplication is not a matrix multiplication. Matrix multiplication is a different operation.
To use the Scalar Multiplication Calculator above:
There is a placeholder in each matrix input element box. For example first box have placeholder of "A11". That is a index of element, for example A11 is first row and first column element of matrix A.
Similarly A12 is first row and second column element of matrix A.
To perform matrix scalar multiplication for matrix M with scalar value S. The resultant matrix P will be:
\(M = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\)
\(S = 5
\)
\(P = \begin{bmatrix}
5 \cdot a & 5 \cdot b \\
5 \cdot c & 5 \cdot d
\end{bmatrix}
\)
Let S be a scalar value (S1, S2) and A, B be matrices. Scalar Multiplication Properties are as follows:
Yes scalar matrix multiplication is commutative. That is, S * A = A * S
\(S = 5
A = \begin{bmatrix}
2 & 3 \\
4 & 5
\end{bmatrix}
\)
\(S \cdot A = \begin{bmatrix}
5 \cdot 2 & 5 \cdot 3 \\
5 \cdot 4 & 5 \cdot 5
\end{bmatrix}
= \begin{bmatrix}
10 & 15 \\
20 & 25
\end{bmatrix}
\)
\(A \cdot S = \begin{bmatrix}
2 \cdot 5 & 3 \cdot 5 \\
4 \cdot 5 & 5 \cdot 5
\end{bmatrix}
= \begin{bmatrix}
10 & 15 \\
20 & 25
\end{bmatrix}
\)
When a inversible matrix M is multiplied by a scalar S, the determinant of the matrix M will also be multiplied by the scalar S to the power of matrix size.
\(M = \begin{bmatrix}
2 & 3 \\
4 & 5
\end{bmatrix}
\)
\(det(M) = 2 \times 5 - 3 \times 4 = 10 - 12 = -2
\)
\(S = 5
\)
\(S \cdot M = \begin{bmatrix}
5 \cdot 2 & 5 \cdot 3 \\
5 \cdot 4 & 5 \cdot 5
\end{bmatrix}
= \begin{bmatrix}
10 & 15 \\
20 & 25
\end{bmatrix}
\)
\(det(S \cdot M) = 10 \times 25 - 15 \times 20 = 250 - 300 = -50
\)
The scalar will be raised to the power of matrix size and multiplied with the determinant of the matrix.
\(
S^2 \times det(M) = 5^2 \times -2 = 25 \times -2 = -50
\)
No, scalar matrix multiplication does not changes matrix sizes, it only scales the elements of the matrix.
Let's multiply the following 4 x 1 matrix with scalar value 41
\(O = \begin{bmatrix}
4.1 \\
3.2 \\
2.3 \\
1.4
\end{bmatrix}
\)
\(41 \cdot O = \begin{bmatrix}
41 \cdot 4.1 \\
41 \cdot 3.2 \\
41 \cdot 2.3 \\
41 \cdot 1.4
\end{bmatrix}
= \begin{bmatrix}
168.1 \\
131.2 \\
94.3 \\
57.4
\end{bmatrix}
\)